Inequalities - Maximum and Minimum

- 1. Given $x_i > 0$ (i = 1, 2, ..., n) and the sum $x_1 + x_2 + + x_n = C$, a constant. Prove that the product $x_1x_2....x_n$ reaches the greatest value when : $x_1 = x_2 = = x_n = \frac{C}{n}$.
- 2. Given $x_i > 0$ (i = 1, 2, ..., n) and the product $x_1 x_2 x_n = C$, a constant. Prove that the sum $x_1 + x_2 + + x_n$ attains the least value when: $x_1 = x_2 = = x_n = \sqrt[n]{C}$
- 3. Given $x_i > 0$ (i = 1, 2, ..., n) and the sum $x_1 + x_2 + + x_n = C$, a constant. Show that $x_1^{\mu_1} x_2^{\mu_2} x_n^{\mu_n}$ takes on the greatest value when: $\frac{x_1}{\mu_1} = \frac{x_2}{\mu_2} = = \frac{x_n}{\mu_n} = \frac{C}{\mu_1 + \mu_2 + + \mu_n}$ where $\mu_i > 0$ (i = 1, 2, ..., n) are rational.
- 4. Let $a_i > 0$, $x_i > 0$ (i = 1, 2, ..., n) and $a_1x_1 + a_2x_2 + + a_nx_n = C$. Prove that the product $x_1x_2...x_n$ reaches the greatest value when : $a_1x_1 + a_2x_2 + + a_nx_n = \frac{C}{n}$
- 5. Let $a_i > 0$, $x_i > 0$ (i = 1, 2, ..., n) and $a_1 x_1^{\lambda_1} + a_2 x_2^{\lambda_2} + + a_n x_n^{\lambda_n} = C$, where λ_i are rational. Prove that $x_1^{\mu_1} x_2^{\mu_2} x_n^{\mu_n}$ takes on the greatest value when: $\frac{\lambda_1 a_1 x_1^{\lambda_1}}{\mu_1} = \frac{\lambda_2 a_2 x_2^{\lambda_2}}{\mu_2} = = \frac{\lambda_n a_n x_n^{\lambda_n}}{\mu_n}$
- 7. Let $x + y + z = \frac{\pi}{2}$, $0 \le x, y, z \le \frac{\pi}{2}$.

At what values of x, y and z does the product tan x tan y tan z attain the greatest value?

- 8. Prove that $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$, where n is a positive integer.
- 9. If a, b, c, d, are p positive integers, whose sum is equal to n, show that the least value of a! b! c! d! is $(q!)^{p-r} [(q+1)!]^r$ where q is the quotient and r the remainder when n is divided by p.
- 10. Find the range of values of x for which $-2 < \frac{3x+11}{x+2} < 2$.
- 11. It is required to express $x^2 + 7y^2 + 20z^2 + 8yz 2zx + 4xy$ in the form $a(x + py + qz)^2 + b(y + rz)^2 + cz^2$, where a, b, c, q, r are constants. By equating coefficients, or otherwise, determine the values of these constants.

Deduce that the given expression is never negative for real values of $\, x, y, z \, . \,$

- 12. If x+y+z=1, $x, y, z \ge 0$, show that the least value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ is 9; and that $(1-x)(1-y)(1-z) \ge 8xyz$.
- 13. Given that: if $a_1, a_2, ..., a_n$ are positive numbers, not all equal, then $\frac{a_1 + a_2 + ... + a_n}{n} \ge (a_1 a_2 ... a_n)^{\frac{1}{n}}$, prove that, if x, y and z are positive numbers such that x + y + z = 1, then x^2yz cannot be greater then $\frac{1}{64}$.
- **14.** (a) Prove that $(a_1^2 + b_1^2 + c_1^2 + d_1^2)(a_2^2 + b_2^2 + c_2^2 + d_2^2) \ge (a_1a_2 + b_1b_2 + c_1c_2 + d_1d_2)^2$, where all the symbols denote real numbers.
 - (b) If $r^2x=aR+bR^3$, where $R\geq r$, and all the symbols are real and positive, prove that $x\geq 2\sqrt{ab}\quad.$